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Abstract—Over the past few decades, dimensionality reduction has been widely exploited in computer vision and pattern analysis.

This paper proposes a simple but effective nonlinear dimensionality reduction algorithm, named Maximal Linear Embedding (MLE).

MLE learns a parametric mapping to recover a single global low-dimensional coordinate space and yields an isometric embedding for

the manifold. Inspired by geometric intuition, we introduce a reasonable definition of locally linear patch, Maximal Linear Patch (MLP),

which seeks to maximize the local neighborhood in which linearity holds. The input data are first decomposed into a collection of local

linear models, each depicting an MLP. These local models are then aligned into a global coordinate space, which is achieved by

applying MDS to some randomly selected landmarks. The proposed alignment method, called Landmarks-based Global Alignment

(LGA), can efficiently produce a closed-form solution with no risk of local optima. It just involves some small-scale eigenvalue

problems, while most previous aligning techniques employ time-consuming iterative optimization. Compared with traditional methods

such as ISOMAP and LLE, our MLE yields an explicit modeling of the intrinsic variation modes of the observation data. Extensive

experiments on both synthetic and real data indicate the effectivity and efficiency of the proposed algorithm.

Index Terms—Dimensionality reduction, manifold learning, maximal linear patch, landmarks-based global alignment.

Ç

1 INTRODUCTION

MANY applications in computer vision and pattern
analysis have steadily expanded their use of complex,

large high-dimensional data sets. Such applications typically
involve recovering compact, informative, and meaningful
low-dimensional structures hidden in raw high-dimensional
data for subsequent operations such as classification and
visualization [24], [25], [28], [29], [37], [51], [52], [53]. An
example might be a set of images of an individual’s face
observed under different poses and lighting conditions;
the task is to identify the underlying variables given only the
high-dimensional image data. Typically, the underlying
structure of the observed data lies on or near a low-
dimensional manifold rather than linear subspace of the
(high-dimensional) input sample space. In this situation, the
dimensionality reduction problem is known as “manifold
learning.” Generally, manifold learning approaches seek to
explicitly or implicitly define a low-dimensional embedding

that preserves some properties (such as geodesic distance or
local relationships) of the high-dimensional observation
data set.

In this paper, we propose a nonlinear dimensionality
reduction algorithm, called Maximal Linear Embedding
(MLE). Compared with the existing methods, MLE has
several essential characteristics worth being highlighted:

1. MLE introduces a novel concept of Maximal
Linear Patch (MLP), which is defined as the
maximal local neighborhood in which linearity
holds. The global nonlinear data structure is then
represented by an integration of local linear
models, each depicting an MLP.

2. MLE aligns the local models into a global low-
dimensional coordinate space by a Landmarks-based
Global Alignment (LGA) method, which provides an
isometric embedding for the manifold. The proposed
LGA method can preserve both the local geometry and
the global structure of the manifold well.

3. MLE learns a nonlinear, invertible mapping function
in closed form, with no risk of local optima during
its global alignment procedure. Thus, the mapping
can analytically project both training and unseen
testing samples.

4. MLE is able to explicitly model the underlying
modes of variability of the manifold, which has been
less investigated in previous work.

5. MLE is computationally efficient. The proposed
learning method is noniterative and only needs to
solve an eigenproblem scaling with the number of
the local models rather than the number of the
training samples.

The rest of the paper is organized as follows: A brief review
of dimensionality reduction methods is outlined in Section 2.
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Section 3 describes the motivation and basic ideas of the
proposed MLE. The detailed implementation of MLE along
with further discussion is given in Section 4. In Section 5,
extensive experiments are conducted on both synthetic and
real data to evaluate the method. Finally, we give concluding
remarks and a discussion of future work in Section 6.

2 RELATED WORK

Over the past two decades, a large family of algorithms,
stemming from different literatures, has been proposed to
address the problem of dimensionality reduction. Among
them, two representative linear techniques are principal
component analysis (PCA) [20] and multidimensional
scaling (MDS) [8]. In the case of so-called classical scaling,
MDS is equivalent to PCA (up to a linear transformation)
[37]. Recently, from the viewpoint of manifold learning,
some new linear methods have been proposed, such as
locality preserving projections (LPP) [18], neighborhood
preserving embedding (NPE) [17], local discriminant
embedding (LDE) [7], unsupervised discriminant projection
(UDP) [52], and orthogonal neighborhood preserving
projections (ONPP) [24]. These methods can preserve either
local or global relationships and uncover the essential
manifold structure within the data set.

The history of nonlinear dimensionality reduction
(NLDR) traces back to Sammon’s mapping [36]. Over time,
other nonlinear methods have been developed, such as self-
organizing maps (SOM) [23], principal curves and its
extensions [16], [43], autoencoder neural networks [2], [9],
and generative topographic maps (GTM) [5]. Recently,
kernel methods [31], [38] provide new means to perform
linear algorithms in an implicit higher-dimensional feature
space. Although these methods improve the performance of
linear ones, most of them are computationally expensive,
and some of them have difficulties in designing cost
functions or tuning many parameters, thus limiting their
utility in high-dimensional data sets.

In the past few years, a new line of NLDR algorithms has
been proposed based on the assumption that the data lie on
or close to a manifold [39]. In general, these algorithms all
formalize manifold learning as optimizing a cost function
that encodes how well certain interpoint relationships are
preserved [45]. For example, isometric feature mapping
(ISOMAP) [42] preserves the estimated geodesic distances
on the manifold when seeking the embedding. Locally
linear embedding (LLE) [34] projects points to a low-
dimensional space that preserves local geometric proper-
ties. Laplacian Eigenmap [3] and Hessian LLE (hLLE) [10]
estimate the Laplacian and Hessian on the manifold,
respectively. Semidefinite embedding (SDE) [49] estimates
local angles and distances, and then “unrolls” the manifold
to a flat hyperplane. Conformal eigenmaps [40] provides
angle-preserving embedding by maximizing the similarity
of triangles in each neighborhood. While these methods
have been presented with different motivations, some
researchers have tried to formalize them within a general
framework, such as the kernel PCA (KPCA) interpretation
[15], the graph embedding framework [51], and the
Riemannian manifold learning (RML) formulation [29]. In
addition, different from the traditional “batch” training

mode, several incremental learning methods [26], [55] were
developed recently to facilitate the applications in which
data come sequentially.

Besides the above-mentioned nonparametric embedding
methods, several parametric coordination methods are
proposed, including global coordination [35], manifold
charting [6], locally linear coordination (LLC) [41], and
coordinated factor analysis (CFA) [44], [45]. These algo-
rithms generally integrate several local feature extractors
into a single global representation. They perform the
nonlinear feature extraction by minimizing an objective
function. After the training procedure, they are able to
derive a functional mapping which can be used to project
previously unseen high-dimensional observation data into
their low-dimensional global coordinates.

In view of previous work, many algorithms are hindered
by the so-called out-of-sample problem, i.e., they provide
embeddings only for training data but not for unseen testing
data. To tackle this problem, a common solution in [4] is
presented for ISOMAP, LLE, and Laplacian Eigenmap.
However, as a nonparametric method, in principle, it
requires storage and access to all the training data, which is
costly for large high-dimensional data sets, especially when
generalizing the recovered manifold structure to unseen new
data. Clearly, a better solution is to derive an explicit
parametric mapping function between the high-dimensional
sample space and the low-dimensional coordinate space.

While finding low-dimensional embedding is the core
problem of manifold learning, another essential issue is to
discover the underlying structure of the observation data.
This can provide useful insights into the manifold geo-
metric structure, and help to determine “interesting”
regions that need extra attention [19], [21]. To this end,
previous works mainly focus on the estimation of the
manifold intrinsic dimensionality [13], [27], [33]. However,
this is not adequate for fully exploring the manifold
structure. To infer the intrinsic modes of variability of the
manifold, current methods usually can only analyze the
visualized embedding results in a somewhat indirect
manner [34], [42], [49], based on the assumption that the
coordinate axes of the embedding space correlate with the
degrees of freedom underlying the original manifold data.

Moreover, compared with their linear counterparts, most
existing nonlinear manifold learning approaches show
inferior computational performance since they either in-
volve a large eigenproblem scaling with the training set size
[3], [6], [34], [42] or require an iterative optimization
procedure such as the EM framework [35], [44].

The proposed MLE method in this paper provides a
solution to the above problems, with five distinct character-
istics briefly summarized in Section 1. The details of the
algorithm are described in the following sections.

3 MOTIVATION AND BASIC IDEAS

Trusted-set methods [6], such as ISOMAP and LLE, usually
define their locally linear patches on each data point by
k-NN or "-ball, generally of fixed and small size. Because
this kind of definition cannot adaptively take into account
the real structure of the neighborhood, it runs the risk of
dividing a large linear patch into multiple smaller ones.
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Evidently, this is not economical (by economical, we mean to
avoid excessive overlaps like in LLE). Also, it has been
noted that small changes to the size of the trusted set can
make the resulting embedding unstable in some cases [1].
Some efforts have been made to alleviate the effect of fixed
neighborhood size [32], [48], [50]. However, the local patch
definition in these methods is still essentially NN-based,
without explicitly accounting for the real linear/nonlinear
structure of the larger neighborhood.

In this paper, we propose to define linear patch
according to the real linear/nonlinear structure in an
adaptive local area. The motivation arises from some
geometric intuition. See a toy example, the “V-like shape”
data illustrated in Fig. 1. It is a patch-wise linear manifold,
where points on the same plane actually span a “global”
linear patch or subspace, and the two neighboring planes
are smoothly connected. However, trusted-set methods will
always ignore this “global” information. With this problem
in mind, we argue that the linear patch should be defined in
a more general and reasonable manner. Therefore, the
concept of Maximal Linear Patch is introduced to capture the
real linear structure. Specifically, each local patch tries to
capture as much “global” information as possible and span
a maximal linear subspace, whose nonlinearity degree is
constrained by the deviation between the euclidean dis-
tances and geodesic distances in the patch. Fig. 2 demon-
strates this idea. Intuitively, we can conjecture that each
maximal linear subspace should be of the intrinsic
dimensionality of the manifold.

Based on the geometric intuition of MLP, a novel
hierarchical clustering algorithm is proposed to partition
the sample data set into a collection of MLPs. Then, for each
MLP, a local linear model can be easily computed as its

low-dimensional representation by using some subspace
analysis method. In this paper, PCA is exploited for this
purpose considering its simplicity and analytic nature.

Once the local models are constructed, we then need to
align them into a global coordinate system and simulta-
neously seek the explicit parametric mapping. To this end,
we do have some possible choices as presented in [6], [35],
[41], [44], [45], etc. However, the methods in [6], [35], [44],
and [45] either need the results of LLE or ISOMAP as the
initialization, or are very time consuming due to the large
number of local models. The method in [41] avoids such
problems and provides a general solution to global
alignment. However, it pursues the LLE cost function
under the unit covariance constraint, which will result in
the deficiency of global metrics and undesired rescaling of
the manifold, as also pointed out in [29] and [30].

Therefore, we further propose a local linear model
alignment method, also inspired from geometric configura-
tion. We call the method Landmarks-based Global Alignment.
The basic idea is as follows: We first build the global
isometric coordinate system with an MDS process among a
certain number of landmarks sampled sparsely from each
MLP. Then, with these “locally-globally” aligned landmarks
as control points, we can consistently align all the local
models by estimating an explicit invertible linear transfor-
mation (translation, scale, and rotation) for each local
model. By integrating these linear transformations, LGA
finally results in a piecewise linear, invertible mapping
function from the sample space to the global embedding
space which can be naturally applied to both training and
unseen testing data points.

Briefly, in sum, the main novelty of the proposed MLE is
two-fold: the concept of MLP and the LGA method, which
lead to several highlighted characteristics, as described in
the introduction.

4 MAXIMAL LINEAR EMBEDDING

In this section, we first introduce the concept of MLP and
the proposed method for MLP construction. Then, the
learning procedure of MLE is presented in detail including
the construction of local model, the Landmarks-based
Global Alignment, i.e., the LGA method, and the analyzing
method for manifold structure. Finally, comparisons of
MLE with other relevant methods are discussed, followed
by the complexity analysis of MLE.
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Fig. 1. The problem of nonlinear dimensionality reduction. (a) 3D “V-like shape” data, which is a patch-wise linear manifold. (b) Three thousand
points are sampled from the manifold (a). (c) The proposed MLE discovers the isometric embedding in two dimensions.

Fig. 2. Illustration of the idea of MLP. The solid semicircle represents a
1D manifold. Intuitively, the piece from P to Q is more likely to be
discovered as an MLP, since its corresponding euclidean distance PQ
(dashed line) approximates the geodesic distance cPQ (solid arc)
preferably. In contrast, the piece from M to N is too curved to be
viewed as a desirable MLP because MN (dashed line) deviates too
much from dMN (solid arc).



4.1 Maximal Linear Patch

We can view manifold learning as an attempt to invert a
generative model for a set of observation data. Given the
observation data set XXXX ¼ fxxxx1; xxxx2; . . . ; xxxxNg, xxxxi 2 IRD, where
N is the sample number and D is the feature dimension.
Assuming that these points are sampled from a manifold of
intrinsic dimensionality d < D, we seek a nonlinear map-
ping onto a vector space: F ðXXXXÞ ! YYYY ¼ fyyyy1; yyyy2; . . . ; yyyyNg,
yyyyi 2 IRd, and 1-to-1 reverse mapping F�1ðYYYY Þ ! XXXX such
that both global structure and local relationships between
points are preserved. As mentioned above, our method
approximates the nonlinear mapping F by concatenating
patch-wise local linear models, each learned from an MLP.
Therefore, we first present the definition of MLP and the
way to construct such MLPs from the observation data.
Following that, a further discussion on a few important
issues of the construction procedure is addressed.

4.1.1 MLP Construction

The principal insight for MLP lies in two criteria—1) linear
criterion: for each point pair in the patch, their geodesic
distance should be as close to their euclidean distance as
possible, which guarantees the patch does span a near
linear subspace and 2) maximal criterion: the patch size
should be maximized until that any appending of addi-
tional data point would violate the linear criterion.

To construct MLPs, our earlier work [46], [47] has
conducted some preliminary study on both one-shot
sequential clustering and hierarchical clustering ways, mainly
for the real application of object recognition with image set.
In this paper, we propose to build MLPs in the more
effective and flexible hierarchical manner since it allows one
to create a cluster tree called dendrogram over different
degrees [11], [22]. Here, for the sake of efficiency, we exploit
hierarchical divisive clustering (HDC) rather than hierarch-
ical agglomerative clustering (HAC), because in most cases
the appropriate number of clusters is much smaller than the
number of data samples.

Fig. 3 gives a conceptual illustration of the proposed
HDC method. All samples are initiated as a singleton MLP
(cluster) in the first level. Then in each new level, the MLP
in the previous level with the largest nonlinearity degree
will split into two smaller ones with decreased degrees.
Finally, we are able to obtain multilevel MLPs associated
with different nonlinearity degrees. We next formulate the
algorithm in a more detailed and rigorous manner.

Formally, we aim at performing a partitioning on the
data set XXXX to obtain a collection of disjoint MLPs XXXXðiÞ, i.e.,

XXXX ¼
[P
i¼1

XXXXðiÞ;

XXXXðiÞ \XXXXðjÞ ¼ � ði 6¼ j; i; j ¼ 1; 2; . . . ; P Þ;

XXXXðiÞ ¼
�
xxxx
ðiÞ
1 ; xxxx

ðiÞ
2 ; . . . ; xxxx

ðiÞ
Ni

� XP
i¼1

Ni ¼ N
 !

;

ð1Þ

where P is the number of patches and Ni is the number of
points in patch XXXXðiÞ.

First, the pair-wise euclidean distance matrix DDDDE and
geodesic distance matrix DDDDG, based on k-NN graph, are

computed [42]. Then a matrix holding distance ratios is
obtained as: RRRRðxxxxi; xxxxjÞ ¼ DDDDGðxxxxi; xxxxjÞ=DDDDEðxxxxi; xxxxjÞ. Clearly,
these three matrices are all of size N �N . Since geodesic
distance is always no smaller than euclidean distance,
RRRRðxxxxi; xxxxjÞ � 1 holds for any entry of RRRR. Besides, another
matrix HHHH of size k�N is also constructed, each column
HHHHð:; jÞ ðj ¼ 1; 2; . . . ; NÞ holding the indices of k nearest
neighbors of the data point xxxxj. Note that, as a byproduct of
the computation of DDDDE and DDDDG, the construction of HHHH

requires no extra computation. Now we can measure the
nonlinearity degree of one MLP XXXXðiÞ by defining a
nonlinearity score function as follows:

SðiÞ ¼ 1

N2
i

XNi

m¼1

XNi

n¼1

RRRR
�
xxxxðiÞm ; xxxx

ðiÞ
n

�
: ð2Þ

With these definitions, the P disjoint MLPs are found
using the HDC Algorithm 1 shown in Table 1. Note that the
threshold � in step 3 controls the termination of the
algorithm, and thus the number of final clusters as well as
their nonlinearity degrees. Obviously, the complete cluster-
ing hierarchy can be produced whenever � is specified to
any value less than 1, since all SðiÞs are larger than 1.

4.1.2 Further Discussion

Concerning the above method for the MLP construction,
several issues need to be further investigated. One is the
linear criterion for MLP. Here in (2), we take the choice of
the average ratio between two distances among all data
pairs in a single MLP. Some alternative strategies might also
be considered, such as the ratio between the respective
sums of the two distances among all data pairs in the MLP,
or the difference between two distances, etc. We believe that
these strategies are in some sense equivalent.

Another feature is the hierarchical clustering manner in
Algorithm 1. Then, how to determine an appropriate
number of the final clusters (MLPs), i.e., P? Take the
“V-like shape” manifold in Fig. 1 for example. By applying
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Fig. 3. Conceptual illustration of our HDC algorithm. The solid semicircledAB represents a 1D manifold. (a)-(d) give the first four levels of MLPs
output. In the first level (a), dAB is initiated as a single MLP. In the second
level (b), dAB splits into two smaller ones, dAC and dBC, with decreased
nonlinearity degrees. In the third and fourth levels (c) and (d), dAC anddBC break into further smaller MLPs. Dashed lines in the figure represent
euclidean distances between two points, and solid arcs correspond to
geodesic distances.



Algorithm 1 to this data set, we can obtain the average
nonlinearity score of corresponding MLPs in each cluster-
ing level, as is shown in Fig. 4a. It can be seen that, the score
decreases as the levels and MLPs are increased. Fortunately,
this curve provides an easy guide to select the proper
number of MLPs. A simple but effective choice is the elbow
of the curve, after the nonlinearity score falls below a
reasonable value, typically being 1.1. At the elbow, the
curve ceases to decrease significantly with added MLPs. In

the given example, two MLPs are discovered as expected,
which are demonstrated in Fig. 4b.

Considering the two disjoint MLPs in Fig. 4b, one can
readily raise a question that the k-NNs of those data points
lying along the patch boundary are assigned to distinct
MLPs. We call these data as boundary points. More generally,
for certain types of data set (imagine a “U-like shape”
manifold), it is likely to divide a large linear patch, which
exactly matches to a true MLP, into two smaller clusters if
only following Algorithm 1. Therefore, the algorithm cannot
guarantee to finally obtain the essential MLPs, while in most
real-world cases it is rather difficult or even impossible to
know the true MLPs. In fact, Algorithm 1 produces a hard
partitioning on the manifold. To tackle the above problem
and achieve more robustness, we can further consider a soft
generalization of the hard partitioning to stitch the disjoint
neighboring MLPs with some additional MLPs. Specifically,
each new MLP stems from a boundary point, and grows to
the same nonlinearity degree as the former hard partitioning
MLPs. The growing process runs in a similar way to the one-
shot algorithm mentioned above. For detailed implementa-
tion, please refer to our work [46]. Fig. 4c shows the final soft
partitioning results on our “V-like shape” manifold.

Clearly, the soft partitioning produces a smooth decom-
position of the data set XXXX, which can lead to a more stable
low-dimensional embedding space and enable the learned
mapping function to be continuous to some extent. Here-
inafter, we denote by M the total number of MLPs after soft
partitioning.

4.2 Local Linear Models

After MLPs are obtained, we need to construct local linear
model for each MLP. PCA is employed for its simplicity and
efficiency. Formally, for each sample xxxxðiÞm in MLP XXXXðiÞ, its
PCA projection is computed by
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TABLE 1
Algorithm 1: Hierarchical Divisive Clustering (HDC)

Fig. 4. Applying HDC to the “V-like shape” data. (a) The average
nonlinearity score in each clustering level. (b) and (c) give the
discovered MLPs in the XY view (encoded with different colors and
shapes) before and after applying the soft stitching generalization,
respectively. As is expected, each plane is approximately discovered as
a single MLP in (b); moreover, the stitching procedure constructs some
additional patches (black open circles in (c)) along the neighboring patch
boundary.



zzzzðiÞm ¼WWWWT
i �
�
xxxxðiÞm � �xxxxðiÞ

�
ðm ¼ 1; 2; . . . ; Ni; and i ¼ 1; 2; . . . ;MÞ;

ð3Þ

where the sample mean

�xxxxðiÞ ¼ 1

Ni

XNi

m¼1

xxxxðiÞm ; ð4Þ

and the D� d principal component matrix

WWWWi ¼
�
pppp
ðiÞ
1 ; pppp

ðiÞ
2 ; . . . ; pppp

ðiÞ
d

�
; ð5Þ

jointly describe the local linear model, Mi (i ¼ 1; 2; . . . ;M),
learned from XXXXðiÞ.

As a result, each local model Mi represents a local
d-dimensional Cartesian coordinate system in the input
sample space, centered on �xxxxðiÞ with axes along the column
vectors of WWWWi. Here, the dimensionality d can be determined
by preserving maximal variances, and all MLPs should
share a common value since they belong to the same
manifold. Refer to Section 4.3.4 for more details on the
estimation of d.

Local model representations of the samples in the MLP
XXXXðiÞ then write afterward as

ZZZZðiÞ ¼
�
zzzz
ðiÞ
1 ; zzzz

ðiÞ
2 ; . . . ; zzzz

ðiÞ
Ni

�
ði ¼ 1; 2; . . . ;MÞ: ð6Þ

4.3 Landmarks-Based Global Alignment

Now the local relationships among the samples in each
MLP have been well preserved by the local models. Hence,
what we need to do next is to pursue a global coordinate
space that preserves the topological relationships between
the local models, i.e., the global structure.

4.3.1 Landmarks Preparation

Intuitively, the global structure can be characterized by the
relationships among the sample means and the principal
axes of all the MLPs. So a natural choice of the final
embedding space can be the isometric coordinate space
learned by the MDS analysis of the sample means and some
samples along the principal axes of the MLPs. Here, we
name these means and sampled points landmarks. Evi-
dently, the MDS must be based on geodesic distance since
the relationship among the local models reflects the
nonlinearity of the manifold.

In theory, to constrain each local model, we need only
the mean and one sample along each principal axis, i.e.,
dþ 1 landmarks. In practice, the mean is not necessarily a
sample among the training set. In this case, the training
sample nearest to the mean, hereinafter we call it centroid, is
used instead. Similarly, the other landmarks need not
be sampled along the principal axes. Instead, they can be
randomly selected, if only their amount for each MLP is a
little greater than d to ensure stability.

Formally, from each MLP XXXXðiÞ we randomly select a
number, say ni (ni � dþ 1), of data points in general
position as landmarks to form the following landmarks set:

XXXX
ðiÞ
L ¼

�
xxxx
ðiÞ
Lð1Þ; . . . ; xxxx

ðiÞ
LðniÞ

�
; ð7Þ

where LðkÞ (k ¼ 1; 2; . . . ; ni) is the original sample index in
XXXXðiÞ(refer to (1)) of the specific landmark. For convenience,
the centroid sample is always set to be xxxx

ðiÞ
Lð1Þ.

Denote the set of all selected landmarks by

XXXXL ¼
[M
i¼1

XXXX
ðiÞ
L ¼

�
xxxx
ð1Þ
Lð1Þ; . . . ; xxxx

ð1Þ
Lðn1Þ; . . . ;xxxx

ðMÞ
Lð1Þ; . . . ; xxxx

ðMÞ
LðnM Þ

�
:

ð8Þ

Correspondingly, the representations of the landmarks in
their individual local model form the following set:

ZZZZL ¼
[M
i¼1

ZZZZ
ðiÞ
L ¼

�
zzzz
ð1Þ
Lð1Þ; . . . ; zzzz

ð1Þ
Lðn1Þ; . . . ; zzzz

ðMÞ
Lð1Þ; . . . ; zzzz

ðMÞ
LðnM Þ

�
: ð9Þ

For the ith MLP, as mentioned above, in case the sample
mean �xxxxðiÞ is not among the training set, the centroid, say
xxxxðiÞn , is used instead. Then, to remain consistent, the origin of
the local coordinate system must be relocated at zzzzðiÞn , i.e., zzzzðiÞn
should be subtracted from all the samples in ZZZZðiÞ. Therefore,
it is easy to know that, in (9), zzzz

ðiÞ
Lð1Þ is a d-dimensional zero

vector as follows:

zzzz
ðiÞ
Lð1Þ ¼ ½0; 0; . . . ; 0�T ði ¼ 1; 2; . . . ;MÞ: ð10Þ

For notational convenience, hereinafter we still denote

the centroid of each MLP by �xxxxðiÞ.

4.3.2 Global Alignment Based on Landmarks

The landmarks can be readily exploited to pursue the global
coordinate system using MDS. We then align the local
models into the global space by estimating piecewise linear
transformations. The procedure is intuitively illustrated in
Fig. 5 and formally described next.

Given the landmarks set XXXXL and their corresponding

interpoint geodesic distances (simply obtain from DDDDG, refer
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Fig. 5. Conceptual illustration of the LGA method. First, the global
coordinate system is learned with an MDS process among the
landmarks. Then, LGA consistently aligns all the local models by
estimating a linear transformation for each local model. The transforma-
tion mainly involves a rotation from the principal components to the
latent components, which are discussed in Section 4.3.4.



to Section 4.1.1), classical MDS can be easily conducted to
locate the landmarks uniquely in a d-dimensional euclidean
space, E. Thanks to the metric preserving property of MDS,
the space E will then serve as a desirable destination space
for isometrically embedding the whole training set XXXX. The
set of the landmarks represented in E is written as

~YYYY L ¼
[M
i¼1

~YYYY
ðiÞ
L

¼
�

~yyyy
ð1Þ
Lð1Þ; . . . ; ~yyyy

ð1Þ
Lðn1Þ; . . . ; ~yyyy

ðMÞ
Lð1Þ; . . . ; ~yyyy

ðMÞ
LðnM Þ

�
;

ð11Þ

where

~YYYY
ðiÞ
L ¼

�
~yyyy
ðiÞ
Lð1Þ; . . . ; ~yyyy

ðiÞ
LðniÞ

�
: ð12Þ

Toward the final embedding of the whole training data,
it only remains to learn the mappings from the individual
local models to the unified space E. Let us first check the
relationships between the local models and the unified
space. On the one hand, the single global MDS process on
all the selected landmarks implies one separate local MDS
process on each MLP (up to a linear transformation). On the
other hand, an MDS process on MLP is approximately
equivalent to PCA (up to a linear transformation) [37]
because geodesic distance is approximately equal to
euclidean distance in MLP due to the nonlinearity degree
constraint in (2). Consequently, we can conclude that for
each MLP, the representations of its samples in PCA-based
local model (i.e.,Mi) are approximately equivalent to their
representations in the unified space E, also up to a linear
transformation. The three parameters of this linear trans-
formation, i.e., rotation, translation, and scale, then need to
be solved in order to map each local PCA model Mi to its
counterpart local embedding in E. Hereinafter, we denote
the local embedding in E of the ith MLP by EEEEi. Note that
they have been aligned in the global space E.

For each MLP, easy to know that ~yyyy
ðiÞ
Lð1Þ should be the

center of its local embedding in E. As a result, translation

can be removed by subtracting ~yyyy
ðiÞ
Lð1Þ from EEEEi. For the scale

problem, it can be easily removed by scaling the coordinates

in EEEEi to make the pair-wise distance between landmarks in

E equal to their distance in XXXX
ðiÞ
L .

Formally, we denote the landmarks in E after scaling and
translation by

ŶYYY
ðiÞ
L ¼

�
ŷyyy
ðiÞ
Lð1Þ; . . . ; ŷyyy

ðiÞ
LðniÞ

�
ði ¼ 1; 2; . . . ;MÞ; ð13Þ

where

ŷyyy
ðiÞ
LðkÞ ¼ si �

�
~yyyy
ðiÞ
LðkÞ � ~yyyy

ðiÞ
Lð1Þ
�
ðk ¼ 1; 2; . . . ; niÞ; ð14Þ

with si being the scaling factor. Because all landmarks are
embedded in the same space E by MDS, scaling factors for
all MLPs should be the same. For the purpose of simplicity,
we assume si ¼ 1 afterward. Note that ŷyyy

ðiÞ
Lð1Þ becomes also a

d-dimensional zero vector. Thus, the only difference
between the coordinates in ZZZZ

ðiÞ
L and ŶYYY

ðiÞ
L is determined by

a rotation operation. As we know, this rotation can be
characterized by a d� d transition matrix TTTT i, which should
be an orthogonal matrix theoretically and satisfy the
coordinate transformation as

�
zzzz
ðiÞ
Lð1Þ � � � zzzz

ðiÞ
LðniÞ

�
d�ni ¼ TTTT i �

�
ŷyyy
ðiÞ
Lð1Þ � � � ŷyyy

ðiÞ
LðniÞ

�
d�ni : ð15Þ

Let AAAAi ¼ ½zzzzðiÞLð1Þ � � � zzzz
ðiÞ
LðniÞ�d�ni and BBBBi ¼ ½ŷyyyðiÞLð1Þ � � � ŷyyy

ðiÞ
LðniÞ�d�ni ,

TTTT i can then be solved by

TTTT i ¼: AAAAiBBBB
y
i ¼ AAAAiBBBB

T
i

�
BBBBiBBBB

T
i

��1
; ð16Þ

where ð�Þy denotes pseudo-inverse. For each MLP XXXXðiÞ, TTTT i
therefore describes the mapping from the local PCA model
Mi to its local embedding EEEEi in the global unified space E.

Note that (16) needs to compute the inverse matrix of
BBBBiBBBB

T
i . Fortunately, as discussed in Section 4.3.1, the ni

(ni � dþ 1) randomly selected landmarks in general posi-
tion can generally ensure rankðBBBBiÞ � d, thus guaranteeing
the nonsingularity of BBBBiBBBB

T
i .

The final embedding of the whole training data now can
be fulfilled by applying corresponding transformation from
each local linear model to the global coordinate space. The
transformation only involves very simple computations as
follows:

yyyyðiÞm ¼ TTTT�1
i � zzzzðiÞm þ ~yyyy

ðiÞ
Lð1Þ

¼ TTTT�1
i �

�
WWWWT

i �
�
xxxxðiÞm � �xxxxðiÞ

��
þ ~yyyy

ðiÞ
Lð1Þ

ðm ¼ 1; 2; . . . ; Ni; and i ¼ 1; 2; . . . ;MÞ:

ð17Þ

Grouping results from all models, according to the sample
indices in the training set, we get the final d-dimensional
coordinates: YYYY ¼ fyyyy1; yyyy2; . . . ; yyyyNg, yyyyi 2 IRd. Recall that the
soft partitioning in Section 4.1.2 has assigned a number of
boundary points into multiple local models. In our current
setting, their final coordinates are computed simply by
averaging the multiresults from corresponding local
models.

To summarize, so far we have learned an explicit
mapping function: F ¼ fF1; F2; . . . ; FMg, where Fi (i ¼ 1;
2; . . . ;M) is parameterized by (17) with parameters f�xxxxðiÞ;
WWWWi; TTTT i; ~yyyy

ðiÞ
Lð1Þg.

4.3.3 Analytic Projection of Unseen Samples

The mapping function (17) gives an explicit forward
mapping from the observation space to the embedding
space. Furthermore, its reverse mapping can be easily
deduced in an entirely inverse manner, i.e.,

xxxxðiÞm ¼ �xxxxðiÞ þWWWWi � TTTT i �
�
yyyyðiÞm � ~yyyy

ðiÞ
Lð1Þ
�

ðm ¼ 1; 2; . . . ; Ni; and i ¼ 1; 2; . . . ;MÞ:
ð18Þ

Equations (17) and (18) imply another advantage of the
proposed method, i.e., once the mapping function F is
learned, the training set is no longer required for subse-
quent process, leading to significant computational and
storage savings.

Easy to understand, as the mapping between the two
spaces is built through a mixture of linear transformations,
when applying to new test data, MLE only needs to first
identify to which local model the test data belongs and then
perform the corresponding transformation. Specifically, as
formulated in Tables 2 and 3, two algorithms are designed
to generalize the training results to unseen cases in the
observation and embedding space, respectively.
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4.3.4 Underlying Manifold Structure

The intrinsic dimensionality of a manifold, d, represents the
underlying degrees of freedom of the observation data.
Intuitively, under manifold assumption, both the local PCA
models and the unified embedding space should be of
d-dimension. As stated before, the dimensionality d of PCA
can be roughly chosen by preserving maximal variances.
On the other hand, when classical MDS is conducted to
pursue the embedding space, as indicated in [42], d can also
be observed from the residual variance curve. In this paper,
we combine the merits of both PCA and MDS for the
estimation of d in a validation-feedback fashion by deriving
the following method.

First, a relatively small interval for possible d, e.g.,
½dmin; dmax�, can be estimated from both PCA and MDS.
Then, transformation error caused by (15) is utilized as a
cost function to evaluate each value in this interval. That is
to say, we aim at minimizing the transformation distortions
between the low-dimensional representations of PCA and
that of MDS over all landmarks. Specifically, for each MLP,
since the transition matrix TTTT i is solved from AAAAi ¼ TTTT i �BBBBi,
then BBBB�i ¼ TTTT�1

i �AAAAi should be as close to BBBBi as possible.
Therefore, the optimization for estimating the optimal d can
be written as follows:

d� ¼ arg min
d

XM
i¼1

Xni
k¼1

��TTTT�1
i � zzzz

ðiÞ
LðkÞ � ŷyyy

ðiÞ
LðkÞ
��;

s:t: dmin � d � dmax;

ð23Þ

where TTTT i 2 IRd�d, zzzz
ðiÞ
LðkÞ; ŷyyy

ðiÞ
LðkÞ 2 IRd�1. This optimization thus

combines the estimations of PCA and MDS together to
make the final arbitration. Because the lower dimensional
coordinates of both PCA and MDS remain the same while
higher ones are added, the two processes only need to be
performed once. Hence, the optimization is very efficient.

With the estimated intrinsic dimensionality, one may
further concern the hidden variation modes, each corre-
sponding to one dimension or degree of freedom, to fully
explore the manifold structure. Here, by hidden variation
modes, we mean the directions in the high-dimensional
observation space along which the manifold data exhibit
global variability. For instance, the “V-like shape” manifold
in Fig. 1 has two hidden variation modes, one along the
curved direction in the XOZ plane and another along the
depth direction parallel to the Y -axis. To deduce such
modes, previous work usually can only act in an indirect

manner [34], [42], [49], by visualizing and analyzing the
distribution of training data in the embedding space.

In contrast, our method enables an explicit modeling of
the hidden variation modes. Let us revisit Fig. 5. Within
each MLP, the PCA basis WWWWi (i.e., principal components,
shown as the dashed line axes) describes the directions with
the largest variances confined only to that local region. To
characterize the global variations across different MLPs, the
PCA basis needs to be transformed to another basis WWWW E

i

(shown as the solid line axes) that are consistently aligned
in the embedding space. In fact, (15) depicts the coordinate
transformation between the landmarks’ coordinates under
the two bases. As a direct consequence, the corresponding
basis transformation can be written as

WWWW E
i ¼WWWWi � TTTT i ¼

�
qqqq
ðiÞ
1 ; qqqq

ðiÞ
2 ; . . . ; qqqq

ðiÞ
d

�
ði ¼ 1; 2; . . . ;MÞ: ð24Þ

Since WWWW E
i directly describes the latent modes of variability

of the high-dimensional data, we analogously call
qqqq
ðiÞ
1 ; qqqq

ðiÞ
2 ; . . . ; qqqq

ðiÞ
d Latent Components (LCs), each component

qqqq
ðiÞ
j (j ¼ 1; 2; . . . ; d) characterizing one axis of the embedding

space. With (24), we then rewrite (18) as

xxxxðiÞm � �xxxxðiÞ ¼WWWW E
i �
�
yyyyðiÞm � ~yyyy

ðiÞ
Lð1Þ
�
: ð25Þ

One can see that as the factor loading matrix in Factor
Analysis (FA) [12], [14], the LCs plays a similar role in
establishing a direct connection between the representations
of manifold data in the high and low-dimensional spaces,
thus it can be expected to find potential uses in many
applications, e.g., manifold denoising, sample interpolation.
In addition, some previous alignment methods like [41],
[45], have used FA to fit their local models and finally also
resulted in a parametric mapping. While the operation to
translate global latent coordinates into directions in the
input space also applies to these methods, they have paid
less attention to this issue and not given an explicit
modeling of the hidden variation modes.

4.4 Discussion

4.4.1 Comparisons with Previous Work

It can be seen that MLE bears some resemblance to global
coordination [35] and subsequent methods [6], [41], [44],
[53], [54]. Generally speaking, these methods all share the
similar philosophy of aligning local linear models in a
global coordinate space, which is first proposed in [35].

Both [35] and [44] use expectation-maximization (EM) to
fit and align local linear models. This makes the algorithms
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quite inefficient, though [44] improves the training algo-
rithm of [35] for a more constrained model. Moreover, as
indicated in [35], because such EM-based methods are
susceptible to local optima, they need a good initialization
based on other methods (e.g., LLE or ISOMAP) to supervise
the iterative optimization procedure.

Differently from [35], [44], the charting [6], LLC [41] and
our MLE can all be viewed as post coordination, where the
local models are coordinated or aligned after they have
been fit to data [41]. By decoupling the local model fitting
and coordination phases, all three methods produce closed-
form solutions and gain efficiency in a noniterative scheme.
Based on convex cost functions, they effectively avoid local
optima in the coordination phase. However, the charting
method builds one local model for each point, so its scaling
is the same as that of LLE and ISOMAP, which is
computationally demanding [29]. In contrast, LLC and our
MLE only need to solve an eigenproblem scaling with the
number of local models, which is far less than the number
of training points.

We further compare MLE with LLC [41]. While LLC
mainly serves as a general alignment method, the work
presented in [41] has exploited a mixture of factor analyzers
(MFA) [14] in the first phase, i.e., local model fitting. The
construction of MFA is performed using an EM algorithm,
which is likely to get stuck in local minima and be hampered
by the presence of outliers, as indicated in [30]. Furthermore,
LLC requires careful optimization of the number of local
models in addition to the optimization of the parameters of
the local models. The proposed MLP, though not guaranteed
to be the optimal local linear models, has an explicit measure
of the nonlinearity degree, which thereby facilitates the
determination of the proper number of local models. In the
second phase, i.e., the coordination, both methods need to
solve the linear transformation (denoted by LLLLi) from each
local model to the global embedding space. LLC incorporates
the parameter LLLLi into the LLE cost function and then directly
obtains LLLLi by solving an eigenproblem, which requires the
intrinsic dimensionality d to be specified a priori. The unit
covariance constraint imposed by LLC will also lead to
undesired rescaling of the manifold. On the contrary, the
LGA algorithm in MLE can be considered as to first pursue
the global space explicitly by exploiting the similar convex
cost function as ISOMAP, and then solve LLLLi in a spectral
regression way. This procedure not only gives rise to an
automatic dimensionality estimation method in Section 4.3.4,
but also enables us to preserve both global shape information
and local structure more faithfully.

In addition, the local tangent space alignment (LTSA)
[54] and locally multidimensional scaling (LMDS) [53] both
share the similar alignment method to LLC in spirit. The
local models in both LTSA and LMDS are still k-NN
neighborhood, which is very crucial to the success of the
methods, as pointed in [53] and [54]. Like charting [6], LTSA
builds extremely overlapping local models on each data
point. To alleviate this heavy redundance, LMDS seeks to
find an approximate minimum set of the overlapping
neighborhoods. Moreover, both methods do not derive a
parametric mapping function. Although LMDS addresses a
nonparametric out-of-sample extension, it suffers from the
same computational cost problem as [4], and no further
experimental justification is provided in [53].

4.4.2 Complexity Analysis

Basically, the computational complexity of MLE is domi-
nated by the following four parts.

1. Computing the three N �N matrices DDDDE , DDDDG, and
RRRR. The complexity of DDDDE computation is OðN2Þ. DDDDG

can be computed using Dijkstra’s algorithm with
Fibonacci heaps in OðN2 logN þ kN2=2Þ time (k is
the neighborhood size in the k-NN graph) [29]. RRRR is
computed in OðN2Þ.

2. Constructing MLPs based on Algorithm 1. From
Table 1, one can see that most steps of the algorithm
are accessing operations against existing matrices
computed in advance. The major computation is in
step 3.3 to compute the nonlinearity score SðiÞ for each
MLP according to (2). For simplicity, we assume the
two child MLPs,XXXX

ðiÞ
l andXXXXðiÞr , are of equal size. Thus,

the total complexity of Algorithm 1 is

O
XlogNb c

p¼1

ð2pðN=2pÞ2Þ
 !

	 OðN2Þ:

3. Building local PCA models. For each MLP XXXXðiÞ with
its data matrix of size D�Ni, the PCA mainly
involves eigenvalue decomposition of the D�D
covariance matrix. Since it is often the case that in
real problems D
 Ni, the eigendecomposition can
be conducted on a Ni �Ni matrix plus some
additional matrix multiplications whose complexity
can be ignored. Thus, the time complexity of this
step is OðminðD;NiÞ3Þ for each of the M MLPs.

4. Aligning the local models by MDS. As discussed
above, MDS is applied to a set of landmarks, whose
minimal number for each model is dþ 1. So the
complexity of MDS is OðM3d3Þ, which scales mainly
with the number of local models M. This exhibits
significant efficiency compared with OðN3Þ in
ISOMAP and LLE. Once MDS is finished, the
remaining computations to align the local models
only involve several matrix multiplications in (16),
(17). Note that the matrix inverse in (16) is only
d� d, which can be conducted very efficiently.

To sum up, the total complexity of MLE is the sum of the

above four parts, which can be approximated by

OðN2 logN þ kN2 þ
XM
i¼1

minðD;NiÞ3 þM3d3Þ:

Generally, Ni, M, and d are far smaller than N , hence the

complexity is roughly OðN2 logNÞ, i.e., the complexity in

the first part is a major burden.

5 EXPERIMENTAL RESULTS

In this section, extensive experiments on both synthetic and

real data are conducted to validate the proposed MLE for

dimension reduction and data reconstruction.
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5.1 Experiments on Synthetic 3D Data

First, we illustrate the algorithm on two benchmark
synthetic data sets: the “swiss-roll” and “s-curve.” For each
set, 3,000 points were randomly sampled from the original
3D manifold surface. The parameters in MLE include: 1) the
neighborhood size, k; 2) the number of hard partitioning
MLPs, P ; and 3) the number of landmarks in each MLP, ni.
They were tuned in the same manner for both sets. Note
that as stated in Section 4.1.2, the final number of MLPs
after soft partitioning is denoted by M.

By specifying k ¼ 12, Algorithm 1 was first applied to
compute the hard partitioning MLPs. The HDC results for
both sets are shown in Figs. 6 and 7. In the following
experiments, according to the average nonlinearity score
curves, we chose the typical value of P as 20 and 16 for the
two data sets, respectively, and selected about 10 percent of
the training data as landmarks.

For a systematic empirical evaluation, we compared our
MLE with three classical methods: ISOMAP, LLE, and LLC.
Since LLC shares the similar two-phase procedure (i.e., local
model fitting + coordination) with MLE, to further
investigate their differences we implemented a variant of
MLE, called MLP Coordination (MLPC). The variant simply
takes our MLP-based PCA subspaces as local models in the
first phase, but uses the alignment method of LLC instead
of our LGA in the second phase.

To conduct quantitative comparison between different
algorithms, we assess the quality of the resulting low-
dimensional embeddings by evaluating to what extent
the global and local structure of the data is retained. The
evaluation is performed in two ways: 1) by measuring the
embedding error (as is done in [45]) and 2) by measuring
the trustworthiness and the continuity errors of the
embeddings (as is used in [30] and [56]). The embedding
error measures the squared distance from the recovered
low-dimensional embedding to the known true latent
coordinates. Due to the unit covariance constraint in LLE,
LLC, and MLPC, the global metric information will be lost
in these methods. To enable their comparison with MLE
and ISOMAP, we simply scaled the true 2D latent
coordinates to ½�1; 1�, as shown in the top row of Fig. 8,

and optimally linearly transform the recovered embeddings
of different methods to the true latent coordinates as in [45].
The embedding error is then defined as follows:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

kyyyyn � yyyy�nk
2

vuut ; ð26Þ

where N is the sample number, yyyyn and yyyy�n represent the
recovered and true latent coordinates, respectively. It is
easy to see that the embedding error tends to measure the
global structure distortion of the manifold. To measure the
local structure distortion, we resort to the trustworthiness
and continuity errors. The trustworthiness error measures the
proportion of points that are too close together in the low-
dimensional space, and is defined as

T ðkÞ ¼ 100� 2

Nkð2N � 3k� 1Þ
XN
n¼1

X
m2U ðkÞn

ðrðn;mÞ � kÞ; ð27Þ

where k is the neighborhood size, rðn;mÞ is the rank of the
point xxxxm in the ordering according to the pair-wise distance
from point xxxxn in the high-dimensional space. The variable
UðkÞn denotes the set of points that are among the k-NNs of yyyyn
in the low-dimensional space but not in the high-dimensional
space. In contrast, the continuity error measures the propor-
tion of points that are pushed away from their neighborhood
in the low-dimensional space, and is analogously defined as

CðkÞ ¼ 100� 2

Nkð2N � 3k� 1Þ
XN
n¼1

X
m2V ðkÞn

ðr̂ðn;mÞ � kÞ; ð28Þ

where r̂ðn;mÞ is the rank of the point yyyym in the ordering
according to the pair-wise distance from point yyyyn in the low-
dimensional space. The variable V ðkÞn denotes the set of points
that are among the k-NNs ofxxxxn in the high-dimensional space
but not in the low-dimensional space. In the following Figs. 8,
9, and 10, the three errors are written under each embedding
and in the form of “Embedding/Trustworthiness/Conti-
nuity” (abbreviated as E./T./C.).

Experiment 1: Influence of k. To evaluate the robustness to
varying neighborhood size k, we have tried sizes from 6 to
18 points and compare results of different methods in Fig. 8.
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Fig. 6. Applying HDC to the “swiss-roll”. (a) Original sampled data.
(b) The average nonlinearity score curve. (c) The first four levels
clustering dendrogram. MLPs are encoded with varying colors.

Fig. 7. Applying HDC to the “s-curve.” Figures in (a)-(c) are similar to

those in Fig. 6.



In our comparisons, we show the best LLC result among
several trials for each parameter, since multiple runs of the
algorithm will initialize different MFA local models, thus
yielding different results. The number of local models used
in LLC and MLPC is 50 and 30, respectively. From the
figure, it is confirmed that the proposed MLE, as ISOMAP,
has preserved the global metric information and produced
more faithful embeddings. In contrast, the aspect ratio is
mostly lost in LLE, LLC, and MLPC due to their unit
covariance constraint. As a local approach, LLE is the most
sensitive to k on preserving global shape information of the
manifold. LLC and MLPC are also shown to generate some
deformations especially under smaller neighbor size. The
advantage of MLE over other methods can be more clearly
demonstrated when observing the quantitative error mea-
sures in the figure. Specifically, while LLC delivers
comparable E.-error to MLE, its T./C.-error is significantly
larger than that of MLE. A similar phenomenon can also be
observed from the comparison between MLE and MLPC,
which only differ in their alignment methods for global
coordination. Such results verify that MLE can show more
reliability on preserving local geometry. We believe that the
success of MLE is attributed to both its efficient local model

MLP and its global coordination method LGA. In addition,
our experiment shows that when applied to evaluate the
embedding, the E.-error and the T./C.-error measures
complement each other since a low E.-error measure does
not necessarily imply the similar low T./C.-error measure.

Experiment 2: Influence of P . Here the number of local
linear models P is a direct reflection of the threshold
parameter � in Algorithm 1, as noted in the end of
Section 4.1.1. Intuitively, the parameter P plays a trade-off
between computational cost and representation accuracy.
That is, a smaller P implies fewer MLPs (thus more
efficiency) but larger linearity deviation within each MLP,
and vice versa. Take the above “swiss-roll” data for
example. According to Fig. 6b, in MLE and MLPC, we
have tested different values of P from 5 to 30 MLPs. For fair
comparison with LLC/MLPC, we used only the hard
partitioning MLPs for subsequent LGA procedure of MLE
in this experiment. For LLC, we also tried different numbers
of local models under the same neighbor size k ¼ 12 as
MLE. Fig. 9 gives the results from the three methods along
with respective computation time. As expected, MLE yields
more and more stable results with increased local models.
Even with very few MLPs, say P ¼ 5, it can still output
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Fig. 8. Comparison of different algorithms with varying neighborhood size k on two synthetic data sets, (a) swiss-roll and (b) s-curve. Results in the

three columns correspond to k ¼ 6, 12, and 18, respectively. The values under each embedding give the error measures in the form of “Embedding/

Trustworthiness/Continuity” (E./T./C.).



desirable embedding. On the contrary, LLC is shown to be
more sensitive to the setting of P , and it requires more local
models (i.e., MFA) to unfold the curved data reliably. When
combining our local models (i.e., MLP) with the alignment
procedure of LLC, the variant MLPC shows improved
embeddings over LLC; however, like LLC, it produces
substantial deformation with small numbers of local
models. Also note that both LLC and MLPC have much
larger T./C.-error than MLE, even though they are under
the similar E.-error. These comparisons, in one aspect, again
verify the economical and efficient merit of MLP, and in
another aspect, demonstrate the advantage of LGA over
LLC for aligning the local models. In terms of the
computation time, both MLE and LLC spend the most part
in local model fitting. We observe that with the same
increase of local models, e.g., from 5 to 20, the time cost
increase for MLE is much less than that for LLC. The reason
is that, as discussed in Section 4.4.2, the major burden of
MLE lies in the computation of geodesic distances, while
the HDC algorithm only takes very little time. In LLC,
however, the time grows proportionally to the number of
local models, and each local model is iteratively optimized
to a factor analyzer by an EM algorithm.

Experiment 3: Influence of ni. For the “swiss-roll” data,
under P ¼ 20, finally M ¼ 57 MLPs were discovered after
the soft partitioning. As stated in Section 4.3.1, the number of
landmarks in each MLP should satisfy ni � dþ 1, where the
intrinsic dimensionality here is d ¼ 2. To investigate its
effect on MLE, by specifying different values, we pursued

the 2D embeddings and computed the residual variances as
[42]. In Fig. 10, more stable embedding with decreased
E./T./C. errors and residual variance can be yielded as the
landmarks increase. Even relying on the least number (dþ 1)
of landmarks, a favorable result with slight distortion can
still be obtained. When ni ¼ 5, i.e., a total of 57� 5 ¼ 285
landmarks (about 10 percent of the training set) were used,
the residual variance gets comparable to that of ISOMAP at
5� 10�4. However, in this case, ISOMAP confronts a much
larger eigenproblem of size 3;000� 3;000, compared with
285� 285 in MLE.

In addition to testing different parameters, we next
highlight several theoretical issues of MLE through empiri-
cal observations on the “swiss-roll” manifold.

1. Orthogonality of transition matrix TTTT i. For each of the
57 local models, we compute the Frobenius-norm of
the matrix ðTTTT iÞTTTTT i � IIII, where TTTT i is the local
transition matrix in (15) and IIII is the identity matrix.
From Fig. 11a, we see that most values are very
close to the target value 0.

2. Estimation of intrinsic dimensionality d. Under the
correct estimation d� ¼ 2, we observe the transfor-
mation error, i.e., each summed term in (23). As
shown in Fig. 11b, the errors are indeed very small
when considering the magnitude of the MLE
embedding space in Fig. 8a. Over a total of 285
landmarks, the mean error 0.247 is even smaller than
the mean nearest neighbor distance 0.389 that is
computed among all data points in the manifold.

3. Validity of the Latent Component. In Fig. 6a, the first
variation mode of “swiss-roll” is along the twisting
direction in the XOZ plane and the second one is
along the depth direction parallel to the Y -axis.
While different local models twist along varying
direction vectors, they all share a common depth
direction vector of ½0; 1; 0�T in the observation
space. As in (24), we thus compare Latent
Component qqqq

ðiÞ
2 (i ¼ 1; 2; . . . ; 57) with the vector

½0; 1; 0�T and demonstrate their correlation coeffi-
cient for each local model in Fig. 11c. The result
turns out to be that the Latent Component is almost
perfectly high-correlated with the essential varia-
tion mode. This observation supports that our
algorithm is able to explicitly model the underlying
variations of the manifold.

5.2 Experiments on Synthetic Image Data

To validate MLE on high-dimensional data, we first used
the ISOFace data set [42], which consists of 698 synthetic
face images of 64� 64 ¼ 4;096 pixels each. All faces lie on
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Fig. 9. Comparison of (a) MLE, (b) LLC, and (c) MLPC with different

numbers of local models. The three rows under each embedding are:

the E./T./C. error measures, the number of local models, and the

computation time (seconds). The time is given in the form of “the first

phase (fitting)” + “the second phase (coordination).”

Fig. 10. MLE 2D embeddings and corresponding E./T./C. error

measures with different numbers of landmarks.



an intrinsically 3D manifold parameterized by two pose
variables plus an azimuthal lighting angle [42]. The whole
set was divided into a training set with the first 650 images,
and a test set with the remaining 48 ones. Note that in the
original set, images are randomly ordered.

Qualitative evaluation. We compared with ISOMAP to
evaluate how well MLE can perform to unravel very high-
dimensional raw data and further to yield parametric
mapping. To learn the manifold, ISOMAP used all
698 samples and MLE employed only the 650 training
images both with setting k ¼ 6 as [42]. For MLE, M ¼ 27
MLPs were finally discovered. By specifying ni ¼ 7, we thus
used a total of 27� 7 ¼ 189 landmarks, about 30 percent of
the training data. Both methods have correctly discovered the
3D face manifold, with the first 2D embeddings visualized in
Fig. 12. One can see again that, similarly to ISOMAP, our
MLE has preserved the underlying global structure of the
manifold whereas it used a relatively smaller training set.

After manifold learning, MLE then allows for out-of-
sample extensions by parametric mapping. We first applied
forward mapping to the test data (index from 651 to 698) to
appropriately locate them in the reduced dimensional space.
Fig. 12 also shows several examples, with each image denoted
by its index. As can be seen, these testing samples successfully
find their coordinates which reflect their intrinsic properties,
i.e., left-right and up-down pose. We then synthesized a series
of virtual views as shown in Fig. 13 by the backward
mapping. There may be question that some virtual faces
seem not as good as the raw images. Two reasons may be
adduced: One is the sparseness of the training set; the other

is that each face is reconstructed by only three compo-
nents (since d ¼ 3).

Quantitative comparison. We made further comparisons
between the generalization performance of MLE and LLC/
MLPC in terms of reconstruction error as [45]. As MLE,
both LLC and MLPC also used the 650 training images to
learn the parametric mapping with P ¼ 30 and 27 local
models, respectively, under the setting of k ¼ 6 neighbors.
The learned mappings from all the three methods were then
utilized to reconstruct each sample in the test set. For each
test sample xxxxn, its reconstruction x̂xxxn is obtained by mapping
xxxxn to a single point yyyyn in the embedding space and then
mapping yyyyn back to the image data space [45]. The
reconstruction error is defined as

En ¼
1ffiffiffiffi
D
p kxxxxn � x̂xxxnk; ð29Þ

where D (in this case D ¼ 4;096) is the dimension of the
image space. Intuitively, the error (29) measures the average
perturbation over all pixels in the test image. Note that,
each pixel is quantized to ½0; 255� in our experiment.

Since the alignment procedure of LLC requires the latent
dimensionality d to be specified a priori, we have tried
different values of d ranging from 3 to 20 for LLC and MLPC.
The errors are summarized in Table 4 and some of the
reconstructions are shown in Fig. 14, where “MLE_3” depicts
MLE trained with d ¼ 3 and the others have analogous
meanings. The reported results in Table 4 are averages and
standard deviations over the 48 test samples. We find that
MLE, with d ¼ 3, can perform as well as LLC with a much
higher d ¼ 20; while LLC fails to reconstruct the face images
with the intrinsic dimensionality well (d ¼ 3). While MLPC
outperforms LLC with decreased reconstruction error under
the same dimensionality as the findings in the “swiss-roll”
data, it still exhibits considerably inferior performance
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Fig. 11. Evaluation of three theoretical issues of MLE on the “swiss-roll” manifold. (a) Frobenius-norm of the matrix ðTTTTiÞTTTTT i � IIII. (b) Transformation
error for the landmarks. (c) Correlations between the Latent Component and the direction vector of the variation mode.

Fig. 12. 2D embeddings of the ISOFace manifold discovered by (a)
ISOMAP and (b) MLE, respectively. Stars in the figure denote test
samples with corresponding images and indices superimposed. Note
that, in the ISOMAP result (a), “test” images are coprojected with
training samples by the ISOMAP training procedure.

Fig. 13. Each row contains faces reconstructed from test points along an
axis-parallel line in the 3D embedding space. From top to bottom: left-
right pose, up-down pose, and light direction variations.



compared to MLE. We attribute the gain of MLE to the high

accuracy of its MLP-based PCA modeling and the cost
controllable LGA coordination facilitated by (23). It is also
worth noting that, given different values of parameter d, LLC
needs to run repeatedly to solve different eigenproblems of
varying sizes. The training time here for MLE_3 and LLC_3/
10/20 is 11.5 and 27.6/35.0/49.5, respectively, all in seconds.
We find that the MFA fitting in LLC on high-dimensional

data is quite time demanding from this experiment.
Estimation of intrinsic dimensionality. To check the feasi-

bility of the method described in Section 4.3.4, here we
show the intermediate results on this synthetic data set.

Figs. 15a and 15b show the estimations from PCA and
MDS, respectively, where the PCA energy preserving ratio
under each dimension was computed by averaging the
ratios from all the 27 local models. Within a roughly

estimated interval ½2; 10� for possible d, according to (23), we
computed the total transformation error of the 189 land-
marks for each value in this interval. On first sight it seems
that higher dimensionality would always lead to smaller
error and the criterion in (23) would thus favor a large value
for d. However, it should also be noted that once d exceeds
its proper value, the added higher dimensional coordinates

in zzzz
ðiÞ
LðkÞ and ŷyyy

ðiÞ
LðkÞ (both are d-dimensional vectors in (23))

will also inevitably cause increase in the transformation
error. Therefore, the cost function (23) does not always
decrease with increasing the dimensionality. The experi-
mental result in Fig. 15c verifies the above analysis. The

correct estimation of d ¼ 3 for ISOFace data demonstrates
the potential of our method to be applied to other more
complex high-dimensional manifold.

5.3 Experiments on Realistic Video Data

In this section, we test MLE on another data set, called
LLEFace [34], which contains real faces believed to reside
on a complex manifold with few degrees of freedom. The
20� 28 face images come from a 1,965-frame video [34] in
which a single person strikes a variety of poses and
expressions, along with heavy synthetic camera jitters.
The data set has also been widely used in [35], [41], [45], etc.

Qualitative evaluation. We first applied MLE on the whole
1,965 samples. For comparison with LLC, the same parameter
setting as [41] was used. With k ¼ 36 neighbors, we chose
P ¼ 10 by HDC. After soft partitioning, M ¼ 26 MLPs were
constructed at last. Since the true latent dimension of this real
image set is not known, we set d ¼ 8 as [41]. By specifying
ni ¼ 15, in total 26� 15 ¼ 390 landmarks (about 20 percent of
the training data) were then exploited to map the face images
from 560D image space to an 8D embedding space. Fig. 16
illustrates the first 2D embedding and some reconstructions.
Similarly to previous work [35], [41], [45], the 2D MLE
embedding correctly discovers the two dominant variations
in the face manifold, one for pose and another for expression.
One may also see that some reconstructions near the
boundary are not good enough. This is mainly because the
model is extrapolating from the training images to low
sample density regions.

Further discussion on the Latent Component. As discussed
in Section 4.3.4, those virtual faces in Figs. 13 and 16 are in
fact reconstructed along the directions of Latent Compo-
nents via (25). In analogy to Eigenface in the face
recognition literature, we call the Latent Component here
as Latentface. Fig. 17 shows the Eigenfaces and Latentfaces
from one local model of the LLEFace manifold. While
Eigenfaces describe the directions with the largest variances
in the high-dimensional data space, Latentfaces describe the
directions which dominate the intrinsic (latent) variability
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Fig. 14. Some source face images and corresponding reconstructions
from MLE/LLC/MLPC under different latent dimensionalities.

TABLE 4
Reconstruction Errors for the ISOFace Data Set

Fig. 15. Estimation of intrinsic dimensionality on the ISOFace manifold.
(a) and (b) give the estimation from PCA and MDS, respectively.
(c) shows the estimation using the proposed cost function in (23).



of the manifold. Therefore, when we reconstruct face
images along the directions of Latentfaces, they will exhibit
the intrinsic modes of variability, which correspond to the
global data variations. With this merit, Latentfaces can be
expected to find potential widespread applications in
various problems, such as pose estimation, facial expression
analysis, face recognition, and so on.

Quantitative comparison. As in the ISOFace data set, we
compared our MLE against LLC to show how their
performances depend on the amount of training data and
the number of local models. From the total 1,965 samples,
we used varying percentage of training data (ranging from
60 to 90 percent) to learn the mapping and the rest as test
data to assess the reconstruction quality. We measure the
average reconstruction error over all test samples xxxxn:

Erec ¼
1

N
ffiffiffiffi
D
p

XN
n¼1

kxxxxn � x̂xxxnk: ð30Þ

Similarly to (29), here D ¼ 560 is the dimension of the image
space, and N is the number of test samples, which takes 785,
589, 393, and 196, respectively, for each train percentage.

We trained MLE and LLC using k ¼ 36 and d ¼ 8, while
varying the number P of local models (ranging from 10 to
25). Again, for fair comparison, we used only the hard
partitioning MLPs for MLE. We tabulated the results in
Table 5, where each error is an average and standard
deviation over five randomly drawn train and test sets for
each percentage. The results show that MLE is always able
to deliver higher accuracy than LLC and both methods
generally obtain decreased errors with more training data,
as expected. Moreover, as the number P grows larger, the
errors of MLE consistently become smaller thanks to the
increased accuracy with more MLPs. In comparison, LLC

shows moderate overfitting when more parameters need to
be estimated for many local models, as also found in [45].

6 CONCLUSION AND FUTURE WORK

We propose a manifold learning method, Maximal Linear
Embedding. Compared to classic ISOMAP and LLE, our
approach can well preserve both local geometry and global
structure of the manifold. The method further derives a
parametric function for out-of-sample extension. Unlike the
locally linear neighborhood in LLE, MLE defines maximal
linear patch as the basis for linear embedding, which is
more reasonable and efficient. Since MLP is constructed
according to the geodesic distance, our method also exploits
the most essential point of ISOMAP. In comparison with
related parametric methods such as LLC, MLE improves
upon them in both phases of local model fitting and
coordination, as discussed in Section 4.4.1. Experimental
results in Section 5 indicate that MLE compares favorably to
LLC in the sense that fewer local models are required to
pursue reliable low-dimensional embedding, and smaller
reconstruction errors can be obtained under the similar
parameter settings.

One interesting research direction is to introduce a
probabilistic model into our MLP, as in LLC and CFA,
which will give a notion of uncertainty in the mapping and
result in more stability and flexibility. Currently, our
coordination method LGA exploits the similar rigid con-
straint of isometry as ISOMAP, which might limit their
applications. Inspired by [29], [57], we will investigate a
more flexible algorithm to achieve a trade-off between the
rigid constraint of isometry and the deficiency of global
metrics. Moreover, we will make an effort to study two
issues plaguing almost all manifold learning methods, noise
sensitivity and sampling density, to extend our work to
more practical and challenging applications.
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TABLE 5
Reconstruction Errors for the LLEFace Data Set
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Component Analyzers,” Proc. Int’l Conf. Artificial Neural Networks,
vol. 12, pp. 914-919, 2002.

[45] J. Verbeek, “Learning Nonlinear Image Manifolds by Global
Alignment of Local Linear Models,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 28, no. 8, pp. 1236-1250, Aug. 2006.

[46] R. Wang, S. Shan, X. Chen, and W. Gao, “Manifold-Manifold
Distance with Application to Face Recognition Based on Image
Set,” Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition,
pp. 2940-2947, 2008.

[47] R. Wang and X. Chen, “Manifold Discriminant Analysis,” Proc.
IEEE Int’l Conf. Computer Vision and Pattern Recognition, pp. 429-
436, 2009.

[48] J. Wang, Z. Zhang, and H. Zha, “Adaptive Manifold Learning,”
Advances in Neural Information Processing Systems, vol. 17, pp. 1473-
1480, 2005.

[49] K.Q. Weinberger and L.K. Saul, “Unsupervised Learning of Image
Manifolds by Semidefinite Programming,” Proc. IEEE Int’l Conf.
Computer Vision and Pattern Recognition, vol. 2, pp. 988-995, 2004.

WANG ET AL.: MAXIMAL LINEAR EMBEDDING FOR DIMENSIONALITY REDUCTION 1791



[50] G. Wen, L. Jiang, and N.R. Shadbolt, “Using Graph Algebra to
Optimize Neighborhood for Isometric Mapping,” Proc. 20th Int’l
Joint Conf. Artificial Intelligence, pp. 2398-2403, 2007.

[51] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, “Graph
Embedding and Extension: A General Framework for Dimension-
ality Reduction,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 29, no. 1, pp. 40-51, Jan. 2007.

[52] J. Yang, D. Zhang, J.Y. Yang, and B. Niu, “Globally Maximizing,
Locally Minimizing: Unsupervised Discriminant Projection with
Applications to Face and Palm Biometrics,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 29, no. 4, pp. 650-664, Apr.
2007.

[53] L. Yang, “Alignment of Overlapping Locally Scaled Patches for
Multidimensional Scaling and Dimensionality Reduction,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 3,
pp. 438-450, Mar. 2008.

[54] Z. Zhang and H. Zha, “Principal Manifolds and Nonlinear Dimen-
sion Reduction via Local Tangent Space Alignment,” SIAM J.
Scientific Computing, vol. 26, no. 1, pp. 313-338, 2004.

[55] D. Zhao and L. Yang, “Incremental Isometric Embedding of High-
Dimensional Data Using Connected Neighborhood Graphs,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 1,
pp. 86-98, Jan. 2009.

[56] J. Venna and S. Kaski, “Visualizing Gene Interaction Graphs with
Local Multidimensional Scaling,” Proc. 14th European Symp.
Artificial Neural Networks, pp. 557-562, 2006.

[57] V. de Silva and J.B. Tenenbaum, “Global versus Local Methods in
Nonlinear Dimensionality Reduction,” Advances in Neural Informa-
tion Processing Systems, vol. 15, pp. 705-712, 2003.

Ruiping Wang received the BS degree in
applied mathematics from Beijing Jiaotong Uni-
versity, Beijing, China, in 2003 and the PhD
degree in computer science from the Institute of
Computing Technology (ICT), Chinese Academy
of Sciences (CAS), Beijing, in 2010. Since July
2010, he has been a postdoctoral researcher in
the Department of Automation, Tsinghua Uni-
versity, Beijing, China. He is currently working as
a research associate with the Computer Vision

Laboratory, Institute for Advanced Computer Studies (UMIACS), at the
University of Maryland, College Park. He received the Best Student
Poster Award Runner-up from IEEE CVPR 2008 for the work on Manifold-
Manifold Distance. His research interests include computer vision,
pattern recognition, and machine learning. He is a member of the IEEE.

Shiguang Shan received the MS degree in
computer science from the Harbin Institute of
Technology, Harbin, China, in 1999 and the PhD
degree in computer science from the Institute of
Computing Technology (ICT), Chinese Acad-
emy of Sciences (CAS), Beijing, in 2004. He has
been with ICT, CAS since 2002 and has been a
professor since 2010. He especially focuses on
face recognition related research topics, and has
published more than 100 papers on related

research topics. He received China’s State Scientific and Technological
Progress Awards in 2005 for his work on face recognition technologies.
One of his coauthored CVPR ’08 papers won the “Best Student Poster
Award Runner-up.” He also won the Silver Medal “Scopus Future Star of
Science Award” in 2009. His research interests include image analysis,
pattern recognition, and computer vision. He is a member of the IEEE.

Xilin Chen received the BS, MS, and PhD
degrees in computer science from the Harbin
Institute of Technology, Harbin, China, in 1988,
1991, and 1994, respectively. He was a profes-
sor with the Harbin Institute of Technology from
1999 to 2005. He was a visiting scholar with
Carnegie Mellon University, Pittsburgh, Penn-
sylvania, from 2001 to 2004. He has been a
professor with the Institute of Computing Tech-
nology, Chinese Academy of Sciences (CAS),

Beijing, since August 2004. He is the director of the Key Laboratory of
Intelligent Information Processing, CAS. He has published one book and
more than 200 papers in refereed journals and proceedings in the areas
of computer vision, pattern recognition, image processing, and multi-
modal interfaces. He is an associate editor of the IEEE Transactions on
Image Processing, an area editor of the Journal of Computer Science
and Technology, and an associate editor of the Chinese Journal of
Computers. He has served as a program committee member for more
than 30 international conferences. He has received several awards,
including China’s State Scientific and Technological Progress Award in
2000, 2003, and 2005 for his research work. He is a senior member of
the IEEE and a member of the IEEE Computer Society.

Jie Chen received the MS and PhD degrees
from the Harbin Institute of Technology, Harbin,
China, in 2002 and 2007, respectively. Since
September 2007, he has been a senior re-
searcher in the Machine Vision Group at the
University of Oulu, Finland. His research inter-
ests include pattern recognition, computer vi-
sion, machine learning, dynamic texture, human
action recognition, and watermarking. He has
authored more than 20 papers in journals and

conferences and is a member of the IEEE.

Wen Gao received the PhD degree in electro-
nics engineering from the University of Tokyo,
Japan, in 1991. He is a professor of computer
science at Peking University, China. Before
joining Peking University, he was a professor
of computer science at the Harbin Institute of
Technology from 1991 to 1995, and a professor
at the Institute of Computing Technology of
Chinese Academy of Sciences. He has pub-
lished extensively, including four books and

more than 600 technical articles in refereed journals and conference
proceedings in the areas of image processing, video coding and
communication, pattern recognition, multimedia information retrieval,
multimodal interface, and bioinformatics. He served or serves on the
editorial board for several journals, such as the IEEE Transactions on
Circuits and Systems for Video Technology, IEEE Transactions on
Multimedia, IEEE Transactions on Autonomous Mental Development,
EURASIP Journal of Image Communications, and Journal of Visual
Communication and Image Representation. He has chaired a number of
prestigious international conferences on multimedia and video signal
processing, such as IEEE ICME and ACM Multimedia, and also served
on the advisory and technical committees of numerous professional
organizations. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1792 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 9, SEPTEMBER 2011


